11 research outputs found

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    State of the Art of Audio- and Video-Based Solutions for AAL

    Get PDF
    It is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters. Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals. Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely lifelogging and self-monitoring, remote monitoring of vital signs, emotional state recognition, food intake monitoring, activity and behaviour recognition, activity and personal assistance, gesture recognition, fall detection and prevention, mobility assessment and frailty recognition, and cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed

    Reduction of β-radiation exposure during preparation of 188Re-labelled Lipiodol for hepatocellular carcinoma treatment.

    No full text
    International audienceRhenium-188 (188Re) is of widespread interest for treating various diseases because of its attractive physical and chemical properties. The routine preparation of therapeutic doses of 188Re-labelled tracers can result in significant radiation exposure to the operator. We studied the impact of automating the preparation of 188Re-Lipiodol on the radiochemist's exposure, as well as the importance of the model of syringe shielding. To monitor radiation exposure continuously readable electronic personal dosimeters were used. Thermoluminescence dosimeters were fixed to the probable most exposed fingers of the radiochemist during preparation of the radiotracer and during the syringing. Dose rates were measured using a Babyline. Automation of the synthesis reduced personal dose equivalents from 2.60±4.35 to 1.61±1.20 µSv/GBq [Hp(10)] and from 38.37±55.28 to 21.84±16.14 µSv/GBq [Hp(0.07)]. Dose to the extremities was also reduced (-80% for the right hand; -58% for the left one). The Lemer-Pax PSWG syringe shield led to a slightly lower dose to the hands compared with the Medisystem (1.1±0.27 vs. 1.34±0.6 mSv/GBq for the right finger). Automation of the synthesis leads to a significant decrease in radiation exposure to the operator. The Lemer-Pax PSWG syringe shield provides better hand protection than the smaller Medisystem Mediclic

    Ultrasonic depolymerization of an exopolysaccharide produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid

    No full text
    International audienceLow frequency ultrasound was used to depolymerize a high-molecular-weight exopolysaccharide (EPS) produced by a deep-sea hydrothermal bacterium Alteromonas macleodii subsp. fijiensis biovar deepsane. The influence of several parameters was examined including the duration of ultrasonic irradiation, EPS concentration, reaction temperature and volume of the sonicated solution. With the aim of optimizing the depolymerization, the native EPS was simultaneously treated with hydrogen peroxide and ultrasound. This study identified the sonication conditions that produce low-molecular-weight derivatives from the native EPS (>106 Da) with good reproducibility

    Preliminary results of the Phase 1 Lip-Re I clinical trial: biodistribution and dosimetry assessments in hepatocellular carcinoma patients treated with 188Re-SSS Lipiodol radioembolization

    No full text
    International audiencePurpose: This study sought to provide preliminary results on the biodistribution and dosimetry following intra-arterial liver injection of 188Re-SSS Lipiodol on hepatocellular carcinoma patients included in the Phase I Lip-Re 1 study.Methods: Results of the first six patients included are reported. Analysis of the 188Re-SSS Lipiodol biodistribution was based on planar scintigraphic and tomoscintigraphic (SPECT) studies performed at 1, 6, 24, 48, and 72 h post-administration. Quantification in blood, urine, and stool samples was performed. Determination of the tumour to non-tumour uptake ratio (T/NT) was calculated. Absorbed doses to target organs and tumours were evaluated using the MIRD formalism.Results: The mean injected activity of 188Re-SSS Lipiodol was 1645 ± 361 MBq. Uptakes were seen in the liver (tumour and healthy liver) and the lungs only. All these uptakes were stable over time. A mean 1.4 ± 0.7% of 188Re-SSS Lipiodol administered was detected in serum samples at 6 h, declining rapidly thereafter. On average, 1.5 ± 1.6% of administered activity was eliminated in urine and feces over 72 h. Overall, 90.7 ± 1.6% of detected activity on SPECT studies was found in the liver (74.9 ± 1.8% in tumours and 19.1 ± 1.7% in the healthy liver) and 9.3 ± 1.6% in the lungs (5.7 ± 1.1% in right and 3.7 ± 0.5% in left lungs). Mean doses absorbed were 7.9 ± 3.7Gy to the whole liver, 42.7 ± 34.0Gy to the tumours, 10.2 ± 3.7Gy to the healthy liver, and 1.5 ± 1.2Gy to the lungs. Four patients had stable disease on CT scans at 2 months. The first patient with rapidly progressive disease died at 1 month, most probably of massive tumour progression. Due to this early death and using a conservative approach, the trial independent evaluation committee decided to consider this event as a treatment-related toxicity.Conclusion: 188Re-SSS Lipiodol has a favorable biodistribution profile concerning radioembolization, with the highest in-vivo stability among all radiolabeled Lipiodol compounds reported to date. These preliminary results must be further confirmed while completing this Phase I Lip Re1 study

    Les effets du jumelage des infrastructures lourdes de transport sur les territoires : quels enseignements?

    No full text
    This article reports a research on the effects of pairing of heavy infrastructures such as motorways and high speed lines railways on the functioning and perception of the territory. The ecological impact, effects on the evolution and perception of landscapes as well as governance issues and social acceptability in nearby areas have been specifically studied in three representative of the major types of land pairing observed in France. The comparison of the different elements from the research shows an apparent contradiction on scales of analysis of the appropriateness of the pairing. If it offers an overall benefit for land management with space saving and limiting fragmentation, it also causes a consumption of land with the creation of interstitial spaces, and a strong polarization of space. From the societal perspective, the advantages and disadvantages of the pairing are also related on scales thinking and posture of the actors interviewed vis-Ă -vis spatial or organizational cuts, or perception of nuisances. Pairing is therefore more a process than a technical solution. Directed downstream, it does not allow for synergies with the territory, but only responds to some isolated subjects like space consumption

    Les effets du jumelage des infrastructures lourdes de transport sur les territoires : quels enseignements?

    No full text
    This article reports a research on the effects of pairing of heavy infrastructures such as motorways and high speed lines railways on the functioning and perception of the territory. The ecological impact, effects on the evolution and perception of landscapes as well as governance issues and social acceptability in nearby areas have been specifically studied in three representative of the major types of land pairing observed in France. The comparison of the different elements from the research shows an apparent contradiction on scales of analysis of the appropriateness of the pairing. If it offers an overall benefit for land management with space saving and limiting fragmentation, it also causes a consumption of land with the creation of interstitial spaces, and a strong polarization of space. From the societal perspective, the advantages and disadvantages of the pairing are also related on scales thinking and posture of the actors interviewed vis-Ă -vis spatial or organizational cuts, or perception of nuisances. Pairing is therefore more a process than a technical solution. Directed downstream, it does not allow for synergies with the territory, but only responds to some isolated subjects like space consumption

    State of the Art of Audio- and Video-Based Solutions for AAL

    Full text link
    The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted

    State of the art of audio- and video-based solutions for AAL

    Get PDF
    It is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.peer-reviewe
    corecore